Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 346: 123641, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428791

RESUMO

The excessive accumulation of hexavalent chromium (Cr(VI)) in the environment poses a risk to environment and human health. In the present study, a potassium bicarbonate-modified pyrite/porous biochar composite (PKBC) was prepared in a one-step process and applied for the efficient removal of Cr(VI) in wastewater. The results showed that PKBC can significantly remove Cr(VI) within 4 h over a wide range of pH (2-11). Meanwhile, the PKBC demonstrated remarkable resistance towards interference from complex ions. The addition of potassium bicarbonate increased the pore structure of the material and promoted the release of Fe2+. The reduction of Cr(VI) in aqueous solution was primarily attributed to the Fe(II)/Fe(III) redox cycle. The sulphur species achieved Fe(II)/Fe(III) cycle through electron transfer with iron, thus ensuring the continuous reduction capacity of PKBC. Besides, the removal rate was also maintained at more than 85% in the actual water samples treatment process. This work provides a new way to remove hexavalent chromium from wastewater and demonstrates the potential critical role of potassium bicarbonate and sulphur.


Assuntos
Bicarbonatos , Compostos de Potássio , Sulfetos , Águas Residuárias , Poluentes Químicos da Água , Humanos , Compostos Férricos , Potássio , Porosidade , Ferro/química , Carvão Vegetal/química , Cromo/química , Compostos Ferrosos , Poluentes Químicos da Água/análise , Adsorção
2.
J Hazard Mater ; 455: 131589, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163890

RESUMO

Although water metalloid pollution is widely studied, the effect of the combined pollution of organic matter and metalloids in mining water and, especially, the possible interaction mechanisms between metalloids and flotation reagents, are both poorly understood. Existence of mixed pollution of metalloids and organic compounds tends to cause more serious harm to natural organisms. In this study, a synergistic removal of arsenite (As(III)) and butyl xanthate (Bx) in an advanced oxidation system was reported using biochar-based catalyst loaded with nano-zero-valent iron from an inexpensive iron source (iron slag) to activate peroxodisulfate. The removal efficiencies were improved by 30 % in the co-existence of As(III) and Bx compared to those of the single pollutant. The theoretical calculations, especially frontier molecular orbital theory, revealed the generation of [AsO2-OH]•- by the combination of As(II) with •OH. This [AsO2-OH]•- participated in the oxidative degradation of Bx with high activity and combined with the sulfur falling off Bx after the reaction to form a novel Fe-As-S complex as indicated by X-ray absorption +fine structure analysis. Overall, this study reports the generation of low-valent arsenic active substances of [AsO2-OH]•- and their effect on the removal of organic pollution containing S atoms in advanced oxidation systems under typical mining water conditions with the coexistence of As(III) and expands the understanding and application of traditional free radicals.

3.
Sci Total Environ ; 844: 156924, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35779737

RESUMO

Arsenic is one of the most common and harmful pollutants in environment throughout the world, especially in aqueous solutions. In this study, two kinds of industrial solid wastes (Oxide scale (OS) and Blast furnace slag (BFS)) and one kind of phytoremediation plant waste (Ramie stalk) were used to prepare an environmentally friendly, low-cost, and efficient calcium silicate coated nano zero-valent iron (nZVI)/biochar composite (BOS) for As(V) adsorption. The potential environmental risks of BOS and their effects on removal of arsenic ions from aqueous media were investigated. The adsorption mechanism was explored and discussed based on XRD, SEM-EDS, XPS, etc. The results suggested that the environmental risk and heavy metals toxicity in BOS by co-pyrolysis were significantly reduced compared to the original materials, and no additional contaminant was observed in the subsequent experiments. Simultaneously, the BOS showed excellent As(V) removal capacity (>99%) and regenerative properties. The As(V) removal mechanisms are mainly ascribed to the complexation and co-precipitation between Fe and As, and the hydrogen bond between CO functional group of BOS and As. The mechanism of enhanced nZVI activity for As(V) removal was revealed. A protective layer of Ca2SiO4 was formed on the surface of nZVI during the co-pyrolysis process to prevent the passivation of nZVI. During the reaction process, the Ca2SiO4 covering the nZVI surface would be continuously detached to expose the fresh surface of nZVI, thus providing more redox activity and adsorption sites. This study provides a new way to treat and recycle industrial steel solid wastes and phytoremediation plant wastes, and the produced calcium silicate coated-nZVI/biochar composite is proposed to be a very promising material for practical remediation of As(V)-contaminated water bodies.


Assuntos
Arsênio , Boehmeria , Poluentes Químicos da Água , Adsorção , Arsênio/análise , Biodegradação Ambiental , Compostos de Cálcio , Carvão Vegetal/química , Resíduos Industriais , Ferro/química , Medição de Risco , Silicatos , Resíduos Sólidos , Aço , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...